Параллельная реализация гексагональной клеточно-автоматной модели волнового процесса

А.В. Логинова

Новосибирский государственный технический университет

Предложена и проанализирована параллельная реализация КАалгоритма моделирования волнового процесса с использованием движущейся окрестности.

Введение

В [1] доказано, что FHPrp-модель (FHP аббревиатура фамилий авторов, rp – rest particles) [2] описывает волновое уравнение. В модели волновой процесс представляется множеством гипотетических частиц, которые под воздействием внешнего источника движутся и взаимодействуют друг с другом в дискретном пространстве. Для того чтобы наблюдать волновой процесс в привычном представлении, вычисляются осредненные значения плотности частиц в каждой клетке клеточного автомата (KA) по некоторой области осреднения (окрестности). Известно, что осреднение является самой трудоемкой операцией в КА-моделировании. Однако уменьшение радиуса окрестности приводит к увеличению автоматного шума.

FHPrp-модель

FHPrp-модель построена на двумерной гексагональной решетке (рис.1, *a*). Каждая клетка имеет 6 соседей и содержит движущиеся частицы и частицы покоя (рис. 1. δ). Движущиеся частицы имеют единичную массу и единичную скорость. В заданный момент времени в каждом направлении может двигаться только одна частица. Частицы покоя имеют нулевую скорость и массу, отличную от нуля. Частицы, находящиеся в клетке с именем ($i_{i,j}$) в заданный момент времени *t*, определяют состояние клетки $\vec{a}_{i,j}^t$. На рис. 1. δ показана клетка с четырьмя движущимися частицами и одной частицей покоя с массой 2.

Каждой клетке ставится в соответствие конечный автомат. Один такт работы автомата состоит на двух этапов: сдвиг и столкновение.

Во время сдвига все частицы сдвигаются к своим соседям. Набор правил столкновения выбирается таким образом, чтобы при каждом столкновении суммарные масса и импульс всех частиц клеточного массива оставались неизменными. Все клетки КА-модели вычисляют новое состояние синхронно и параллельно, в результате чего происходит изменение глобального состояния автомата. Итеративная смена глобальных состояний описывает динамику волнового процесса.

Моделирование КА-волны

Для визуализации волнового процесса через T тактов для каждой клетки массива вычисляются осредненные значения плотности по некоторой области осреднения с радиусом r (рис. 2, a) по формуле

$$\langle \rho_{ij} \rangle^t = \frac{1}{|Av(ij)|} \sum_{i,j \in Av(ij)} \rho_{ij}^t,$$

где $\rho_{i,j}$ – плотность клетки (*i*,*j*) в момент времени *t*. Область осреднения в оперативной памяти компьютера представляется в виде фигуры на рис. 2, *б*.

Рис. 2. Представление гексагональной решётки: *а* – в модели; *б* – в оперативной памяти компьютера

На рис. 3 показаны времена, которые тратятся на собственно моделирование (100 итераций) и на одно осреднение для КА размера 10000×10000 клеток при разных радиусах осреднения *r*.

Рис. 3. Сравнение времени моделирования (100 итераций) со временем одного осреднения

Для уменьшения времени осреднения будем использовать движущуюся окрестность. Для этого переходим к квадратной области осреднения размера $(2r+1)\times(2r+1)$ клеток. Идея вычисления осреднённого значения плотности клетки с именем (i,j) с помощью движущейся окрестности проиллюстрирована на рис. 4. Осреднённое значение клетки с именем (i,j+1) равно значению плотности клетки с именем (i,j) и плюс сумма плотностей первого столбца из окрестности клетки (i,j+1). Аналогично для клетки с именем (i+1,j) только вычитаем и прибавляем соответствующие строки.

Рис. 4. Иллюстрация идеи движущейся окрестности

Уменьшение времени вычисления осреднённых значений плотности клеток массива с помощью движущейся окрестности (см. рис. 3)

68

связано с тем, что большая часть вычислений при определении осреднённого значения для близлежащей клетки не выполняется. Более того, моделирование показало, что от увеличения радиуса осреднения время осреднения практически не зависит.

Параллельная реализация

Для получения минимального времени моделирования волнового процесса клеточный массив между процессорами кластера должен быть разделён таким образом, чтобы время осреднения было меньше времени работы КА в течение T тактов на одном процессоре. Для выполнения этого условия на кластере с SMP-архитектурой^{*} при моделировании волнового процесса КА размера 20000×20000 клеток и радиусом r = 50 под осреднение было выделено одно ядро, T = 100. На рис. 5 показана зависимость времени моделирования от количества ядер.

Рис. 5. Зависимость времени работы КА от количества ядер

Заключение

При моделировании волнового процесса линейное ускорение было достигнуто не только за счёт параллельного выполнения, но и за счёт использования нетрадиционного способа осреднения.

^{*} Четыре процессора по четыре ядра (ИВМ и МГ СО РАН).

Литература

- Zhang M. Computing Electromagnetic Fields in Inhomogeneous Media Using Lattice Gas Automata / M. Zhang, D. Cule, L. Shafai // Proceedings of 1998 Symposium on Antenna Technology and Applied Electromagnetics. Ottawa, Canada, 1998. №11. P. 14-16.
- Frish U. Lattice-Gas hydrodynamics in two and three dimensions / U. Frish, D. d'Humieres, B. Hasslacher // Complex Systems. 1987. №1. P. 649-707.